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Adaptive Transversal Preamplifier for High Speed
Lightwave Systems

A. P. FreundorferMember, IEEED. H. Choi, and Y. Jamani

Abstract—A nine-tap transversal preamplifier using cascode
MESFETs in a distributed structure has been designed for
pulse shaping data, AGC and group delay control in high speed
lightwave systems. The circuit was fabricated in a microwave
monolithic integrated circuit (MMIC) implementation using
0.8 pm GaAs MESFET technology. The AGC capability was — gupu
demonstrated. The best noise measured for this preamplifier was
15 pA/v/Hz. -
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O compensate for distortion in long haul lightwave trans-

mission, equalizers in the form of a tapped delay line filter
can be used between the preamplifier and the threshold detector. @)
This tailors the pulse shape at the input of the decision cir-
cuitry, thereby improving the receiver sensitivity. Recently, ex-
periments have shown that an 11 dB improvement could be ob-
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tained in a 10 Gb/s long haul system to compensate for the ef- ~

fects of polarization-mode dispersion (PMD) by using tap delay Von

line filters [1], [2]. DC Control
Transversal filters that have been designed for lightwave sys- 0

tems have been reported [3], [4] but suffer from limited band v

shape control. An adaptive four-tap SiGe equalizer [2] was re-

ported in a 10 Gb/s system that showed a 5 dB improvement on

the receiver sensitivity. A five-tap equalizer microwave mono- (b)
lithic integrated circuit (MMIC) with cascode gain block [S] Fig. 1. (a) Distributed transversal preamplifier. (b) Variable gain block.
was designed and demonstrated adaptive pulse shape control.

The principle of [5] has been extended and presented here as ) o .

a transversal preamplifier with nine-taps. It is now capable §{9: 1- It differs from the distributed preamplifier in that the
preamplification, AGC and group delay control on a single chiB.UtpUt is taken at the opposite end of the drain line. Gain and

This conceptual idea was first expressed in [7] but no measufdyse shape control is achieved by individually controlling the
results were given. transconductance gains (tap weights) of the gain blocks [5].

From input to output, the signal has to travel to and from the
Il. THEORY gain blocks along the distributed gate and drain lines, and for
each gain block, the delay to the output is different. It is easy to
The wide bandwidth of the distributed amplifier (DA) strucshow, by superposition of the output voltages for a given input
ture makes it an attractive component for use in high-speggitage, that the frequency response is the same as a transversal
lightwave systems [6]. As a distributed preamplifier, the noisgp delay line filter [3]-[5]. The pulse shaping capability of this
and gain characteristics are often superior to those of more e of circuit was shown in [5].
ditional methods of preamplification [6]. Using the same struc- Referring to Fig. 1, the inductande, and the input capac-
ture, a transversal preamplifier can be constructed, as showftihce C;n of the cascode amplifier form a transmission line
with impedanceZ., = +/L,/Ci,. Similarly, the drain line
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where Cratput Tap Weights Controls

gmi transconductance of th¢h stage which can be indi- ‘,,-"’
vidually controlled [5]; XKV ¥ FY Y *

¥ i CECEREee
= wy\/L,Cin = wV/LgCoy = wry; = wry. i

Using noise analysis similar to [6], it can be shown that the
modeled equivalent input noise current is given by (2), showng
at the bottom of the page, where

1 _,']\T - E‘HHE z'!
Zy = _§ZﬂﬂZﬂde ’ ¢ngi, To Photo Diode Ch L * DC Bias
(Input)
i BT g, T
Zrol T Zrg' Zral = g Fig. 2. Photo of nine-tap transversal preamplifier.
A(r, ) = Re{C(r,¢) + 1}, and 0

C(r,¢) = E::l Imi t+ Eﬁ\:_lr gm,,ﬂe—j(%)qg'

ST grpes s

k is Boltzmann’s constant arifl is in degrees Kelvin. The first £
two terms in (2) are the noise contributions due to the termina-£
tions Z., and Z.4. The remaining contributions are the noise &zsr 5
sources produced by the two MESFETg|? and|iy|? are the é I
gate and drain noise of the MESFETSs apd,. is the correla- &
tion between the sources [8]. 1

Ill. RESULTS

A fractionally spaced nine-tap transversal preamplifier | /
MMIC with cascode gain block was designed using the same
principle in [5] and was constructed in a Qu8n self-aligned
gate process. The MESFET had the following process pag.3. Measured AGC capability of the nine-tap transversal preamplifier.
rameters:V, = —1.2V, Iy = 120 A/mm, f, = 20 GHz.
The transversal preamplifier chip was then wire bonded tascode. This also gives4d,, = 50 2 = Z.4. The maximum
a 35 mm p-i-n photodiode. Witlh, = 1.25nH = L, and transconductance of the cascode wasnax = 30 m—L
Cin = 500fF = C,y the delay difference, between gainA photograph of the nine-tap transversal preamplifier chip is
blocks, of the gate and drain line were made to be identicgtiown in Fig. 2. Each tap weight is controlled by changing
and given byr, = 74 = 25 ps which gives a total delay the applied voltagé’s,, to the common-gate transistor of the
T = 74 + 74 = 50 ps. Ciy, and C,y; Were obtained by cascode. Measured AGC capability is shown in Fig. 3. It can
adding additional capacitance to the input and output of the seen that the above cascode transversal filter cannot only
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ample PHEMT, this class of circuit could be used at higher data
rates.
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IV. CONCLUSION

A fractionally-spaced preamplifier using cascode MESFETSs
and a distributed structure for pulse shaping has been designed
for use in high speed lightwave systems. The capability of the
technique is demonstrated with a MMIC implementation using
0.8 um GaAs MESFET technology. The AGC capability of the
transversal preamplifier was demonstrated and the best noise
measured for this preamplifier was 15 pAfz.

Input equivatent Noise current desity [pA/sqrt(Hz)] and Zt [dB ohm]
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